
Beyond Whack-A-Bug

WH ITE PAPE R

Shifting From a Reactive to Proactive E2E Testing Strategy
Erik Fogg, CoFounder & Chief Revenue Officer



TABLE OF CONTENTS

Introduction ..................................................................................................................... 3

Why Whack-a-Bug Testing Is So Common .............................................. 4

The Fallacy of Whack-a-Bug Testing ............................................................ 5

Why Whack-a-Bug Testing Hurts More Than It Helps ....................... 6

Repairing the Damage of Whack-a-Bug ....................................................7

Sharing a Commitment to Better QA ........................................................... 8

About ProdPerfect ...................................................................................................... 9

© ProdPerfect 2020   |   Beyond Whack-a-Bug 2



INTRODUCTION

Of all of the classic arcade games, Whack-A-Mole just might be the most 
frustrating. You can’t win the game of Whack-A-Mole. Every time you think 
you’ve hit the mole, the little scoundrel always finds a way to pop up again 
somewhere else, and you’re always one step behind. 

In the world of end-to-end (E2E) testing, we can get stuck playing Whack-
A-Bug when we reactively write tests to bugs that pop up in production 
in order to prevent them from appearing again. I like to call this practice 
Whack-A-Bug testing because it’s a common approach, yet can easily 
become an endless cycle in which testers are always one step behind. As 
leaders in our organizations, we must instead figure out how to be one step 
ahead, committing to developing more courageous, forward-thinking E2E 
testing strategies.

© ProdPerfect 2020   |   Beyond Whack-a-Bug 3



WHY WHACK-A-BUG TESTING IS SO COMMON

Quality Assurance (QA) teams live in an unenviable world: their work is 
largely unnoticed until something goes wrong. They’re then faced with 
explaining their decision not to test something, especially if the results cost 
the organization money. We’ve heard so many times, “Why didn’t this get 
tested?” Whatever the reason for the revenue-impacting bug, if QA “fails” to 
assure quality, they can be chastised by other leaders in the company. QA 
leaders and engineers are thus under immense pressure to prevent mistakes 
and ensure the same bugs don’t pop up in production more than once.

Prior to co-founding ProdPerfect, I used to do some consulting work with 
factories. Operations such as oil refineries are able to clearly track metrics 
related directly to revenue and cost, and can thus fairly easily make 
decisions related to return on investment (ROI). In a refinery, you can 
easily measure how many barrels of oil were produced each day, and thus 
prioritize what investments to make to increase this daily number. Many 
factories lose sight of the ROI on their actions and become reactive to the 
most recent problem that occurred in the plant. But when they do make the 
commitment to prioritize their work on high-ROI improvements, it’s fairly easy 
to measure the results. 

When you measure performance of software QA within an organization, you 
can’t measure six man-hours of code in barrels. Test code isn’t uniformly 
valuable, and each update doesn’t have an equal impact (good or bad) 
on the business. Because of this variance, it can be hard to resolve multiple 
competing priorities: How do we deliver value and quality without sacrificing 
speed? The lack of clarity in measuring speed, value, and quality prevents 
engineers from having clear ROI agreement and unified productivity KPIs.

Despite the challenging and often organizationally unclear work of 
measuring performance in engineering, the pressure to perform still exists 
for engineers. And since QA teams often feel the brunt of this pressure, QA 

“Unless you’re 
committed 
to testing 
every possible 
permutation 
of behavior, it’s 
essential to  
re-prioritize.”

© ProdPerfect 2020   |   Beyond Whack-a-Bug 4



leaders are often forced into operating from a reactive stance in their E2E 
testing strategy. In other words, due to a lack of clear prioritization metrics, 
many teams resort to playing Whack-A-Bug with their testing to appease 
the organization at large. Sticking to high-ROI initiatives in testing is difficult, 
but just as important as in a refinery.

THE FALLACY OF WHACK-A-BUG TESTING

To challenge this practice, we as leaders first need to ask ourselves: Does a 
bug slipping through in one part of an application increase the likelihood that 
it’s going to happen again in the same place more than anywhere else? I like 
to think of the comparable, yet common fallacy in gambling: If you pull the 
slot machine six times and didn’t get jackpot, does this mean the next time 
you pull it, there’s a higher likelihood of hitting jackpot? Though our guts may 
tell us otherwise, the answer to both questions is ultimately no.

The fallacy of Whack-A-Bug testing is assuming that if we create another 
test where we previously saw a bug, then we’re more secure than if we wrote 
that test elsewhere. It’s simply not the case that because a bug happened 

in a certain area, then it follows that there’s an increased likelihood that the 
bug will happen in that area again. Whack-A-Bug testing is NOT a proactive 
testing strategy: a Whack-A-Bug test doesn’t add a test to the area of the 
application with the greatest need for tests. Instead, it is a passive strategy: 
we’re testing an area as a reaction to seeing a bug there. The fact that a 
bug came up last week shouldn’t change our organizational focus on writing 
tests for high-priority areas: areas that are more likely to produce bugs, that 
are important for customer use, or that directly impact revenue.

“The fallacy 
of Whack-A-
Bug testing is 
assuming that 
if we create 
another test 
where we 
previously saw a 
bug, then we’re 
more secure than 
if we wrote that 
test elsewhere.”

© ProdPerfect 2020   |   Beyond Whack-a-Bug 5



WHY WHACK-A-BUG TESTING HURTS MORE THAN IT HELPS
Whack-A-Bug testing hurts engineering organizations for several reasons:

It distracts us from writing well-prioritized tests. 

Before any bug shows up in production, a QA team has developed a strategy 
for what to test, based on a certain mechanism of prioritization. When we 
write Whack-A-Bug tests, we’re pivoting our test-writing resources away 
from whatever prioritization mechanism we otherwise had and towards the 
Whack-A-Bug test. As a result, we delay writing future high-priority tests.

It adds maintenance burden to your team. 

Whack-A-Bug testing decreases your team’s capacity to write future 
high-priority tests. Every time you write an E2E test, you’re committing to 
maintain that test. This creates a fixed, unavoidable ongoing level of work 
that decreases your capacity to write more tests with the same number of 
engineers. Most teams I’ve seen attempt to make up for this by simply hiring 
more.  

It slows down developer productivity and velocity. 

In a continuous delivery process, each new E2E test adds to the test suite 
run-time, which lengthens your regression cycle. If your test suite takes half 
an hour to run and you’re running with each commit, this means either that 
1) your developers aren’t producing anything during that time or 2) your 
developers are checking in code less often because they don’t want to wait 
for the tests to run (or both). In both cases, you lose developer productivity 
and provide less-frequent quality feedback for each build, meaning each 
incremental Whack-a-Bug test costs developer velocity. 

It bloats your test suite and increases instability. 

At some point, your test suite will have grown large enough that there’s 
a high probability that it will fail on a given run due to instability. Once 
instability reaches a certain critical mass, the test suite fails so frequently 
that developers stop paying attention. When that happens, it starts providing 
negative value: adding deployment runtime without contributing to quality. 

© ProdPerfect 2020   |   Beyond Whack-a-Bug 6



REPAIRING THE DAMAGE OF WHACK-A-BUG TESTING

How do we reverse the damage of Whack-A-Bug testing? First, our 
organizations need to re-examine our testing choices through a blank-slate 
exercise. We must ask ourselves: If we were to build this strategy from the 
ground up once again, what would be our testing priorities? What would we 
test to balance test coverage with speed, maintenance burden, and stability? 
Once we’ve defined what’s ideal for us to test, we need to then overlay that 
outlook on what’s currently being tested as is.

And here’s the hard part: we need to have the 
courage to shut down tests that don’t align with 
this strategy. And we need to move on.

One helpful aid in this process is to evaluate tests that have been in the suite 
for 6 months or longer and review: Have they caught any bugs in the last 6 
months? If they haven’t, your team should strongly consider retiring them, as 
they’re likely not worth prioritizing. Unless you’re committed to testing every 
possible permutation of behavior, it’s essential to re-prioritize. What we learn 
by doing this exercise is that most Whack-A-Bug tests never actually catch 
a bug. Whack-A-Bug tests may give us short-term comfort in the face of 
organizational political pressure. But when we let the data speak instead of 
human impulse, we see that the vast majority of the time, writing Whack-A-
Bug tests provides little to no real business value. It’s when we stare this harsh 
reality in the face that we find the courage that we need to reprioritize our test 
suites, drastically reducing the number of unnecessary tests.

Ultimately, developing a new testing strategy from the ground-up that 
highlights your most important priorities will free up your developers and QA 
resources to properly cover what’s truly important to your business.

Better 
Quality

Better Speed  
and Cost

Higher Trust From Your 
Developers in the Test Suite

1 2 3

“It’s when we 
stare this harsh 
reality in the 
face that we 
find the courage 
that we need 
to reprioritize 
our test suites, 
drastically 
reducing the 
number of 
unnecessary 
tests.”

The benefit is 
three-fold:

© ProdPerfect 2020   |   Beyond Whack-a-Bug 7



SHARING A COMMITMENT TO BETTER QA

Many QA teams resort to Whack-A-Bug testing because they’re under 
pressure to respond to quality problems in prod. A better QA practice is 
only possible when all leaders across our organizations share and fulfill the 
commitment to stick to the team’s QA strategy, rather than muck with it 
every time something seems to go wrong.

First, it’s crucial for engineering and product leaders to recognize alongside 
QA leaders that Whack-A-Bug testing does not necessarily improve quality 
assurance. We must understand that a bug appearing in a certain place 
shouldn’t necessarily change priorities for what to test moving forward. Our 
leaders must keep their commitment to a well-defined trade-off mechanism 
between speed, productivity, and QA. Each organization’s trade-off will be 
different and change over time, but it needs to be sacred at any given time.

When we see a bug in our code, we need to commit to asking: 

• Do we need to rethink our strategy, or possibly rethink our trade-off point? 

• Are we prioritizing the right way? 

• Are we making the right commitment to what an acceptable level of testing 
looks like? 

• How might our testing approach be unduly burdening our team?

This discipline helps us resist the knee-jerk reaction to build a new Whack-a-
Bug test. At ProdPerfect, our commitment to each other is that we will not be 
reactive in determining QA priorities. 

We invite you to join us in this commitment: We will not act upon knee-jerk 
reactions to immediately build tests for every bug. Rather, we will learn from 
bugs. We will evaluate them over a period of time by overseeing where 
bugs are slipping out and what damage they’re producing. Then, we’ll make 
data-driven decisions to inform our testing strategy. We’ll collectively own the 
consequences and costs of making changes to our testing strategy. But we will 
not knee-jerk respond by playing Whack-A-Bug with our testing approach.

Making this commitment requires organizational discipline and courageous 
leadership from all. All our leaders must agree to see quality assurance as a 
partnership in which organizations need to effectively balance their testing 
priorities and determine the best level of coverage for the business. Each of 
us has something to benefit in making such a commitment, and I invite you 
to share in this commitment with me. Instead of burdening our processes 
and teams with reactive Whack-A-Bug testing, let’s care for them well by 
thinking proactively and letting data alone drive our testing strategy.

“At ProdPerfect, 
our commitment 
to each other is 
that we will not 
be reactive in 
determining QA 
priorities.”

© ProdPerfect 2020   |   Beyond Whack-a-Bug 8



ABOUT PRODPERFECT

Unleashing the power of machine learning to solve the hardest, most important, and 
previously unsolved problems in end-to-end (E2E) QA testing, ProdPerfect is the only 
autonomous E2E regression testing solution on the market that continuously identifies, 
creates, maintains, and evolves E2E test suites via data-driven, machine-led analysis 
of anonymous live user traffic. It is a fully-managed testing solution that addresses 
insufficient test coverage which causes critical and costly bugs in production; 
removes the burden that consumes massive engineering resources; and eliminates 
long test suite runtimes that slow deployments and decrease developer velocity.

SCHEDULE A PRODUCT INTRODUCTION TODAY

© ProdPerfect 2020   |   Beyond Whack-a-Bug 9

https://prodperfect.com/product-introduction/?utm_source=WP%20General&utm_medium=WP%20General&utm_campaign=WP%20General
https://www.linkedin.com/company/prodperfect/
https://twitter.com/prodperfectqa
https://www.facebook.com/ProdPerfectQA/
https://www.youtube.com/channel/UCCJUHz05_l3DINVkzM1KSOA

